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Abstract-There exist several micromechanics models for the determination of the effective moduli
of microcracked solids, and crack density is the only parameter in these models that characterizes
the effect of microcracking. A numerical hybrid BEM method, in conjunction with a unit cell model,
is proposed in the present paper to evaluate these micromechanics models. A unit cell, which can
be considered as a representative block in the solid, contains randomly distributed microcracks.
The unit cell is then assumed to be periodic in the solid so as to account for interactions between
cracks inside and outside the cell. There are stochastic variations of the estimated moduli for
different microcrack distributions. Two groups of microcracks with the same crack density, one
with a low number oflarge cracks and the other with a large number of small cracks. show the same
range of stochastic variations and the same mean of effective moduli for random distributions of
microcracks. The effective moduli based on this numerical method for randomly distributed cracks
and parallel cracks are compared with those from various micromechanics models. While the
differential method provides the closest estimation to the mean of the numerical results at low crack
density, the generalized self-consistent method is much more accurate at relatively high crack
density.

1. INTRODUCTION

There are several micromechanics models to estimate the effective elastic-moduli of solids
containing microcracks, such as the dilute or non-interacting solution [e.g., Kachanov
(1992)], the self-consistent method (Budiansky and O'Connell 1976), the Mori~Tanaka
method [e.g., Benveniste (1987)], the differential method [e.g., Norris (1985), Zimmerman
(1991)], and the generalized self-consistent method (Huang et al. 1994). The differences
among these models stem from the way they account for interactions among microcracks.
For example, the interaction is neglected in the dilute or non-interacting solution and is
partially accounted for in the other models. A single parameter, crack density, is adopted
in all these models to characterize the effect of microcracking. However, there are few
experimental data with which to verify these models since it is difficult to measure the crack
density of a microcracked solid. Vavakin and Salganik (I975) conducted experiments on a
thin elastic sheet containing an array ofrandomly oriented slits. Kachanov (1994) pointed
out that the centers of these cracks were arranged on a square lattice, but were not randomly
located. Zimmerman (1985) examined several sets ofexperimental data on cracked ceramics
and showed that they were all consistent with the various micromechanics models, insofar
as the relationship between the effective Young's modulus and shear modulus is concerned.

Kachanov (1992) proposed a numerical method using a two-dimensional analysis to
verify these models for the case of two-dimensional analyses, i.e., all microcracks parallel
to the X3 axis. Twenty-five microcracks with the same length were randomly generated in

1575



1576 Y. Huang et al.

locations and orientations within a square in an infinite matrix. The crack density was
evaluated from the crack length and the area of the square, and the effective moduli were
obtained from the crack opening and sliding displacements in the square. This approximate
solution showed that the mean of the effective moduli for these randomly generated micro­
cracks is closest to the estimate given by the dilute or non-interacting solution, which was
justified by the cancellation of microcrack shielding and anti-shielding.

Huang et al. (1994) pointed out that since there were no microcracks embedded outside
the square in Kachanov's (1992) analysis, the interaction between microcracks inside and
outside the square was neglected. Therefore, more microcracks were embedded in a layer
outside the square, while maintaining the same crack density. The layer thickness was
chosen such that any microcracks outside the layer would not significantly affect the
estimation of moduli based on the square. Their solution showed that the mean of the
effective moduli for randomly generated cracks is closer to the estimate from the generalized
self-consistent method than that from the dilute or non-interacting solution.

The aim of the present study is to provide a different numerical method that can
deal with the problem using 25 microcracks inside the square and an infinite number of
microcracks outside the square so that the interactions between microcracks inside and
outside the square can be accounted for accurately. The numerical results for randomly
generated microcracks are compared with the micromechanics models in order to determine
which micromechanics model provides the optimum estimation of the moduli. The fol­
lowing sections are limited to two-dimensional, plane-strain analysis.

2. MICROMECHANICS MODELS

Budiansky and O'Connell (1976) defined the crack density (2D) for a microcracked
solid as

(1)

where N is the number of microcracks per unit area in the plane, a is the half length of a
microcrack, and (a2

) stands for the average of a2 over all microcracks. The matrix model
is assumed to be isotropic. Two types of microcrack distributions are considered in the
following: randomly distributed cracks and parallel cracks.

2.1. Randomly distributed cracks
Microcracks are assumed to be completely randomly distributed in size, orientation,

and location in a solid (Fig. 1). The microcracked solid has in-plane isotropy and is
characterized by the in-plane stress-strain relation

(2)

where ayy = all +a22' Gis the in-plane shear modulus, and B is the in-plane bulk modulus
since 811 +822 = (a ll +(22)/(2B); Gand B are to be determined.

Dilute or non-interacting solution and Mori-Tanaka method. The interactions among
microcracks are neglected in the dilute or non-interacting solution. A closed-form solution
exists [e.g., Kachanov (1992)]

Bdilute = 1/(1 + I-v n8)
B I 1-2v

Gdilute 1--------
G 1+(1-v)m;

(3)

(4)
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Fig. I. Randomly distributed cracks.

where B = E/[2(1 +v)(1-2v)] and G = E/[2(1 +v)] are the corresponding moduli of the
matrix material, i.e., the solid without microcracks; E and v are the Young's modulus and
Poisson's ratio of the matrix material. The Mori-Tanaka method [e.g., Benveniste (1987)]
gives results identical to those in eqns (3) and (4).

Self-consistent method. The self-consistent method accounts for microcrack interaction
by embedding each crack directly in the effective medium-the microcracked solid (Bud­
iansky and O'Connell 1976). A closed-form solution exists (Hu and Huang 1993):

Bscm (I-2v)(I-nE)

B 1-2v+vnE
(5)

(6)

Differential method. The differential method is an incremental form of the self-con­
sistent method [e.g., Norris (1985), Zimmerman (1991)], where the effective moduli are
governed by the coupled ordinary differential equations. A closed-form solution exists
(Huang 1993) :

Bdifferential l-2v
(7)

B ene(l-v)-v

Gdifferential
(8)

G ene(l_ v) +v
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Fig. 2. Normalized in-plane bulk modulus, BIB, vs crack density, E. for randomly distributed cracks,
estimated by the unit cell model and various micromechanics models.

Generalized self-consistent method. The generalized self-consistent method is a modi­
fication of the self-consistent method, where each microcrack is embedded in a surrounding
matrix layer, which, in turn, is embedded in the effective medium (Huang et al. 1994). An
approximate solution is found as

Ggscm I

G 1+(l-v)m+DG (v)c 2

where DB(v) and Ddv) depend on Poisson's ratio, v:

D B (0.2) = 1.57, D s(0.3) = 1.97, Ds(OA) = 3.07

DdO.2) = 0.93, DdO.3) = 0.78, DdOA) = 0.61.

(9)

(10)

(lla,b,c)

(lld,e,f)

The normalized in-plane bulk and shear moduli, jj and G, for these methods given in
eqns (3)-(l1) are shown in Figs 2 and 3, respectively, with v = 0.3.

2.2. Parallel cracks
As shown in Fig. 4, microcracks are assumed to be randomly distributed in size and

location, but are parallel to the x 1 direction. The microcracked solid is orthotropic within
the plane and is characterized by the following stress-strain relations:

(l2a)

(l2b)



The numerical calculation of two-dimensional effective moduli for microcracked solids 1579

1.0 .-------------------------,

0.8

0.6

0.4

0.2

-- - - - dilute
GSCM

-- • -- dlIIenertial
•••••••.•• SCM

o numerical

randomly distributed cracks

.-
--.

0.0 L..- --JI...-__........_---1 -L .....J

0.0 0.2 0.4 0.6 0.8

E

Fig. 3. Normalized shear modulus, GIG, vs crack density, E, for randomly distributed cracks,
estimated by the unit cell model and various micromechanics models.
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Fig. 4. Parallel cracks.
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(12c)

where Aij are elastic compliances given by

v(l+v)
A I2 = - E '

1
An =~,

E
(13)

Here, E and v are the Young's modulus and Poisson's ratio of the matrix material, and E
and G are, respectively, the effective plane-strain modulus normal to the crack direction
and the in-plane shear modulus of the microcracked solid.

Dilute or non-interacting solution and Mori-Tanaka method. A closed-form solution
exists for the dilute or non-interacting solution [e.g., Kachanov (1992)]. The Mori-Tanaka
method becomes identical to the non-interacting solution for microcracked solids [e.g.,
Benveniste (1987)]. The normalized moduli are given by

Edilute 1
E/(1-v2 ) = 1+2nt

Gdilute 1
~-- ---

G l+(l-v)nt'

(14)

(15)

Self-consistent method. Hoenig (1979) and Hu and Huang (1993) studied the effective
moduli of solids containing parallel cracks using the self-consistent method. The moduli E
and Gare governed by the coupled nonlinear algebraic equations:

where

G( I-V)(j 1+n-
2
-Ct = 1

[
)E/(1-V2) 2 (G )J112C= 2 _ +2+- --1

E I-v G

(16)

(17)

(18)

Differential method. The differential method is an incremental form of the self-con­
sistent method. The effective moduli are governed by the coupled ordinary differential
equations. A closed-form solution exists (Huang 1993) :

G !( I-v )(j= 1 1+-
2
-(e2'''-1).

(19)

(20)

To the best of our knowledge, there are no estimations for the moduli of a solid
containing parallel cracks using the generalized self-consistent method. The plane-strain
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Fig. 5. Normalized plane-strain tensile modulus, E/[E/(l- v1
)], vs crack density, E, for parallel

cracks, estimated by the unit cell model and various micromechanics models.

modulus and shear modulus, E and G, are shown in Figs 5 and 6, respectively, for the
methods in eqns (15)-(20), with v = 0.3.

3. NUMERICAL METHOD

3.1. Effective moduli ofa microcracked solid
Kachanov (1992) provided a general expression for the average strain in a micro­

cracked solid:

where (10 is the stress imposed on the microcracked solid; O'~, = O'? I + O'g2 ; E and v are the
Young's modulus and Poisson's ratio of the matrix material, respectively; A is the in-plane
area of the solid; the superscript (i) denotes the ith crack in the solid; the summation is
over all cracks; bU) = uU)+ -UU)- is the displacement discontinuity vector across the top (+)
and bottom ( - ) surfaces of the ith crack due to (10; <bU) stands for the average of bU) over
the crack surface; n(l) is the unit normal pointing into the solid on the top surface ( + ) ; and
aU) is the half length of the ith crack. The displacement discontinuity vector, b(l), is linear
proportional to the stresses, (10, imposed. The last term in eqn (21), i.e., the summation
over all crack surfaces, gives the additional strain due to microcracking. It depends on the
location, orientation, and length of the microcracks, hence, there are stochastic variations
of the average strains of the microcracked solid for different microcrack distributions. The
moduli of the microcracked solid evaluated from the average strain in eqn (21) will also
show a range of stochastic variations, and the mean of the variations will be compared with
various micromechanics models.

For imposed biaxial tension, O'? I = (lg2 = 0'0 and O'? 2 = 0, eqn (21) gives



1582

0.8

0.6

0.4-

o.a

Y. Huang et al.

o

".

dilute
diflenertial

SCM
numerical

....... ...

0.0 L- --'- ....1- '-- --'

0.0 0.2 0.4

E

0.6 0.8

Fig. 6. Normalized shear modulus, GIG, vs crack density, e, for parallel cracks, estimated by the
unit cell model and various micromechanics models.

The in-plane bulk modulus of the microcracked solid is

For imposed pure shear, a~z = ,0 and a~l = agz = 0, eqn (21) gives

The in-plane shear modulus of the microcracked solid is

(22)

(23)

(24)

(25)

For imposed tension in the Xz direction, agz = SO and a?l = a?z = 0, eqn (21) gives

The plane-strain modulus in direction 2 is

(26)
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(27)

3.2. Unit cell model
In order to estimate the elastic moduli given in eqns (23), (25) and (27) for randomly

generated cracks, a representative block, A, must be selected. Moreover, as pointed out by
Huang et al. (1994), the interaction between microcracks inside and outside the rep­
resentative block should be accounted for. Since it is impossible to handle the infinite
number of microcracks in a solid, a unit cell model is adopted in the following. Microcracks
are randomly generated within a square unit cell, stich as those shown in Fig. I for randomly
distributed cracks and in Fig. 4 for parallel cracks. This unit cell can be considered as the
representative block in a solid. The unit cell with the crack distribution randomly generated
in the cell is assumed to repeat in the solid, i.e., to be doubly periodic in the Xl and X2
directions. Parallel cracks (Fig. 4) within the unit cell are randomly located, but are parallel
to the Xl direction. However, randomly distributed cracks are generated randomly with
respect to location and orientation.

The length of the unit cell is b (Fig. 7), and the origin of the X,-X2 coordinates coincides
with the corner A. The four corners, A, B, C, and D, move to A', B', C' and D', respectively,
after deformation. In order to have displacement compatibility with neighboring cells, as
shown in Fig. 7, the corners A', B', C', and D' must form a parallelogram, and the relative
displacements between the deformed unit cell and the parallelogram must be the same for
the left and right edges and for the bottom and top edges of the unit cell. The horizontal
and vertical stretches are denoted by Ah and Av, while the rotations of horizontal and
vertical segments are denoted by (J, and (J2, respectively.

The periodicity and compatibility of displacements on the boundary of the unit cell
require

D

A

ul(b,X2) = u,(O,x2)+Ah

u2(b,x2) = U2(O,x2)+(J,b

or

-----~- 1
b + .6.v

1
AI I

\. b+.6.h~
o

+----- T
b

Xl
B

II--"-- b-~..I
Fig. 7. Displacement compatibility on the boundary of the unit cell.

(28)

(29)
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(30)

(31)

where /),h, /),v, OJ, and O2 are to be determined. The periodicity and continuity of tractions
on the boundary of the unit cell give

(32)

(33)

(34)

(35)

As in eqn (21), the general stresses imposed on the microcracked solid are (J~fJ (ex, f3 = 1,2).
The periodicity and overall equilibrium of the solid requires

(36)

(37)

(38)

(39)

Similarly to Kachanov (1992) and Huang et al. (1994), it is assumed, for simplicity,
that all microcracks have the same half length, a. The crack density is then

(40)

where M is the total number of cracks in the unit cell. The area A = b2
, and the summation

in eqns (23), (25) and (27) is over all microcracks in the unit cell.

3.3. Numerical methodIor microcracks in afinite domain
Erdogan et al. (1973) developed a numerical method for multiple cracks in an infinite

domain. Cracks are modeled as continuous distributions of dislocations. The unknown
dislocation densities are governed by integral equations that can be solved by an efficient
collocation method.

The boundary element method (BEM) is advantageous for problems in a solid, finite
domain, i.e., no microcracks. The fundamental solution for the standard BEM is Kelvin's
solution, a point force in an infinite matrix. The application of the reciprocal theorem leads
to a boundary integral equation, which has the advantage of dealing with boundary
displacements and tractions only. The evaluation of internal stresses and displacements
involves more computation because it involves the integration of boundary quantities.

Chandra el al. (1995) combined these two methods for multiple cracks in a finite
domain and developed a hybrid micro-macro BEM formulation. The modified fundamental
solution for the BEM-a point force in an infinite domain containing the exact distribution
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of multiple cracks as in the finite domain-is solved first using the Erdogan et al. (1973)
numerical method. The traction-free condition on crack surfaces is met in the modified
fundamental solution. The application of the reciprocal theorem to the actual problem in
the finite domain and the modified fundamental solution leads to a boundary integral
equation on the domain's external boundary, excluding crack surfaces.

For the unit cell in the present study, the hybrid micro-macro HEM formulation
(Chandra et al. 1995) is utilized with the boundary conditions in eqns (28)-(39). The
displacements and tractions on the boundary of the unit cell are obtained numerically.

3.4. Evaluation of the average displacement discontinuity vector
In order to estimate the effective moduli of a microcracked solid, one needs the average

displacement discontinuity vector, (b(i», which is defined by

(41 )

where the integration is over the surface of the ith crack. Since the Chandra et al. (1995)
numerical method (discussed above) only provides the displacements on the boundary of
the unit cell, an auxiliary problem is considered in the following in order to extract the
integral in eqn (41).

Let an infinite matrix contain exactly the same distribution of multiple cracks as in the
finite domain. The top and bottom surfaces of the ith crack are subject to tractions t(i·A)
and _t(i,A) (i = 1,2, ... , M), respectively, where t(i·A) are to be determined and the super­
script (A) stands for the auxiliary problem. This problem can be solved by the Erdogen et
al. (1973) numerical method. The tractions and displacements at the boundary of the unit
cell (in this infinite matrix) are denoted by teA) and U(Al, respectively. The reciprocal theorem
for the auxiliary problem and the unit cell problem gives

t r t(i·A)·b(i)dS= r . (t'u(A)~t(A)'u)dS
I = I Jlth crack JI Unit cell

(42)

where t and u are tractions and displacements on the boundary of the unit cell, runit cell,
for the unit cell problem. The choice of crack surface tractions, t(i,A) (i = I, 2, ... , M) in the
auxiliary problem is now clear, i.e., select t(i,A) such that JitheraCk t(i,A) . b(i) dS becomes the
corresponding term in the summation in eqn (21). For example, t(l·A) = u(1) for the estimation
of in-plane bulk modulus in eqn (23), t(i,A) = (nY), nI'») for shear modulus in eqn (25), and
t(i,A) = (0, n~)) for plane-strain elastic modulus in the xrdirection in eqn (27).

4. RESULTS AND DISCUSSION

As suggested by Kachanov (1992) and Huang et al. (1994), the number of microcracks
in the cell, M, is fixed at 25. The crack length is related to the crack density by eqn (40). A
random number generator is used to generate the locations and orientations of microcracks
(only locations are randomly generated for parallel cracks). Twenty-five microcracks are
generated randomly and independently in each microcrack distribution. They are regen­
erated if there is an intersection among cracks or an intersection between cracks and the
cell boundary, because the present numerical solution procedure cannot handle the crack
intersection. Fifteen microcrack distributions are generated for each crack density. The
numerical method described in the previous sections is used to calculate the effective moduli
for each crack distribution. The crack density, e, is taken as 0.1,0.2,0.4, and 0.6, and the
Poisson's ratio of the matrix material is fixed at 0.3.

The in-plane bulk and shear moduli, jJ and C, for randomly generated microcracks
are presented in Figs 2 and 3, respectively, along with the micromechanics models for
randomly distributed cracks. The 15 generalizations of microcracks for each crack density
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provide stochastic variations in the moduli. The range of variations is below that for the
dilute or non-interacting solution and above that for the self-consistent solution. The mean
of the moduli is close to the solution using the differential method at relatively low crack
density (e ~ 0.2). As the crack density increases, the mean of the moduli becomes closer to
the solution using the generalized self-consistent method. The generalized self-consistent
method provides a good estimation for relatively high crack densities. It may be noted here
that both differential and generalized self-consistent methods account for crack interactions.

In order to verify the numerical solution procedure and the convergence of the solution,
the calculations are redone using twice as many cracks (M = 50) while the crack length is
reduced correspondingly so as to keep tUj:: level of crack density the same (0.1, 0.2, 0.4, and
0.6). After 15 random realizations of the crack orientation and location, it is found that
the ranges of stochastic variations in moduli are extremely close to those in Figs 2 and 3
and that the means of moduli for the random generalizations of microcracks are nearly
identical.

The plane-strain elastic modulus and shear modulus, E and G, for parallel cracks are
shown in Figs 5 and 6, along with the micromechanics models. There is a range of stochastic
variations in moduli, which is typically above the solution using the differential method.
Although a solution using the generalized self-consistent method does not exist, it is
anticipated from the trend in Figs 2 and 3 that it would be between the dilute or non­
interacting solution and the differential solution (Huang and Hwang 1995) and, hence,
close to the mean of moduli for randomly generated parallel cracks.
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